Как диссиденты с помощью кибернетики пытались изменить мир

Современное понимание науки

Впервые термин «кибернетика» в научном контексте был использован в трудах древнегреческих ученых. Под этим словом они понимали искусство чиновника, управляющего городом. Однако ни это определение, ни определение Андре-Мари Ампера, упомянутое выше, не отражает современные представления о ней. В XX веке термин был переосмыслен учеными, поспособствовавшими становлению нового научного направления. Например, Луи Куффиньяль называл ее искусством обеспечения эффективности действия, а Стаффорд Вир — наукой о правильном управлении в какой-либо совокупности.

Важно! Ученые до сих пор спорят о том, что такое кибернетика. Среди них нет согласия в том, какое определение их науки — наиболее правильное и точное

Самым известным является вариант, предложенный Норбертом Винером.

Согласно Винеру, это наука, которая занимается изучением общих закономерностей работы с информацией в сложных системах управления. Она рассматривает четыре основные операции с информацией:

  • получение;
  • передача;
  • хранение;
  • модификация.

Кибернетика как наука, зародившаяся на стыке междисциплинарных исследований, нашла обширное применение и в точных видах познания, и в социальной сфере.

Индивидуальные доказательства

  1. Ганс Иоахим Флехтнер: Основные понятия кибернетики. 1970, с. 9.
  2. Томас Рид : Сумерки машины. Краткая история кибернетики . Propylaeen, Berlin 2016, ISBN 978-3-549-07469-5 (492 стр., Американский английский: Восстание машин. Кибернетическая история . Нью-Йорк, 2016. Перевод Майкла Адриана, первое издание: WW Norton & Company).
  3. ↑ Норберт Винер: Кибернетика. Регулирование и передача сообщений в живых существах и в машинах . Второе, переработанное и дополненное издание. Econ-Verlag, Düsseldorf 1963 (287 страниц, американский английский: кибернетика или управление и коммуникация в животных и машинах . 1948. Перевод Э. Х. Серра, Э. Хенце, первое издание: MIT-Press).
  4. Джон фон Нейман: Теория самовоспроизводящихся автоматов . опубликовано посмертно. Ред .: Артур В. Беркс . University of Illinois Press, 1967, ISBN 978-0-252-72733-7 (английский, 388 страниц).
  5. Эран Маген, Джеймс Гросс: Модель кибернетического процесса самоконтроля и Пол Кароли: Системы целей и саморегулирование. В: Рик Х. Хойл (ред.): Справочник по личности и саморегулированию. Блэквелл Паблишинг, 2010.

Сфера кибернетики

Объектом кибернетики являются все управляемые системы. Системы, не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход, кибернетическая система. Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею.
Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики — ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х годах XX века этих машин, а развитие кибернетики в теоретических и практических аспектах — с прогрессом электронной вычислительной техники.

Кроме средств анализа, в кибернетике используются мощные инструменты для синтеза решений, предоставляемые аппаратами математического анализа, линейной алгебры, геометрии выпуклых множеств, теории вероятностей и математической статистики, а также более прикладными областями математики, такими как математическое программирование, эконометрика, информатика и прочие производные дисциплины.

Особенно велика роль кибернетики в психологии труда и таких её отраслях, как инженерная психология и психология профессионально-технического образования. Кибернетика — наука об оптимальном управлении сложными динамическими системами, изучающая общие принципы управления и связи, лежащие в основе работы самых разнообразных по природе систем — от самонаводящих ракет-снарядов и быстродействующих вычислительных машин до сложного живого организма.
Управление — это перевод управляемой системы из одного состояния в другое посредством целенаправленного воздействия управляющего.
Оптимальное управление — это перевод системы в новое состояние с выполнением некоторого критерия оптимальности, например, минимизации затрат времени, труда, веществ или энергии.
Сложная динамическая система — это любой реальный объект, элементы которого изучаются в такой высокой степени взаимосвязи и подвижности, что изменение одного элемента приводит к изменению других.

Направления

Кибернетика — более раннее, но всё ещё используемое общее обозначение для многих предметов. Эти предметы также простираются в области многих других наук, но объединены при исследовании управления системами.

Чистая кибернетика

Чистая кибернетика, или кибернетика второго порядка изучает системы управления как понятие, пытаясь обнаружить основные её принципы.

ASIMO использует датчики и интеллектуальные алгоритмы, чтобы избежать препятствий и перемещаться по лестнице

  • Искусственный интеллект
  • Кибернетика второго порядка
  • Компьютерное зрение
  • Системы управления
  • Эмерджентность
  • Обучающиеся организации
  • Новая кибернетика
  • Interactions of Actors Theory
  • Теория общения

В биологии

Кибернетика в биологии — это исследование кибернетических систем в биологических организмах, изучающее то, как животные приспосабливаются к окружающей их среде, и, как информация в форме генов может перейти от поколения к поколению.
Также имеется второе направление — киборги.

Термический снимок пойкилотермного паука-птицееда на руке гомойотермного человека

  • Биоинженерия
  • Биологическая кибернетика
  • Биоинформатика
  • Бионика
  • Медицинская кибернетика
  • Нейрокибернетика
  • Гомеостаз
  • Синтетическая биология
  • Системная биология

Теория сложных систем

Теория сложных систем анализирует природу сложных систем и причины, лежащие в основе их необычных свойств.

Способ моделирования сложной адаптивной системы

  • Сложная адаптивная система
  • Сложные системы
  • Теория сложных систем

В вычислительной технике

В вычислительной технике методы кибернетики применяются для управления устройствами и анализа информации.

  • Робототехника
  • Система поддержки принятия решений
  • Клеточный автомат
  • Симуляция
  • Компьютерное зрение
  • Искусственный интеллект
  • Распознавание объектов
  • Система управления
  • АСУ

В инженерии

Кибернетика в инженерии используется, чтобы проанализировать отказы систем, в которых маленькие ошибки и недостатки могут привести к сбою всей системы.

Искусственное сердце, пример биомедицинской инженерии.

  • Адаптивная система
  • Эргономика
  • Биомедицинская инженерия
  • Нейрокомпьютинг
  • Техническая кибернетика
  • Системотехника

Обзор

Термин «кибернетика» изначально ввёл в научный оборот Ампер, который в своём фундаментальном труде «Опыт о философии наук, или аналитическое изложение естественной классификации всех человеческих знаний», первая часть которого вышла в свет в 1834 году, вторая в 1843 году, определил кибернетику как науку об управлении государством, которая должна обеспечить гражданам разнообразные блага. В современном понимании — как наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе, термин впервые был предложен Норбертом Винером в 1948 году.

Кибернетика включает изучение обратной связи, чёрных ящиков и производных концептов, таких как управление и коммуникация в живых организмах, машинах и организациях, включая самоорганизации

Она фокусирует внимание на том, как что-либо (цифровое, механическое или биологическое) обрабатывает информацию, реагирует на неё и изменяется или может быть изменено, для того чтобы лучше выполнять первые две задачи. Стаффорд Бир назвал её наукой эффективной организации, а Гордон Паск расширил определение, включив потоки информации «из любых источников», начиная со звёзд и заканчивая мозгом.


Пример кибернетического мышления. С одной стороны, компания рассматривается в качестве системы в окружающей среде. С другой стороны, кибернетическое управление может быть представлено как система.

Согласно другому определению кибернетики, предложенному в 1956 году Л. Куффиньялем (англ.), одним из пионеров кибернетики, кибернетика — это «искусство обеспечения эффективности действия».

Ещё одно определение предложено Льюисом Кауфманом (англ.): «Кибернетика — это исследование систем и процессов, которые взаимодействуют сами с собой и воспроизводят себя».

По словарю Ожегова: «Кибернетика — наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе».

Кибернетические методы применяются при исследовании случая, когда действие системы в окружающей среде вызывает некоторое изменение в окружающей среде, а это изменение проявляется на системе через обратную связь, что вызывает изменения в способе поведения системы. В исследовании этих «петель обратной связи» и заключаются методы кибернетики.

Современная кибернетика зарождалась, включая в себя исследования в различных областях систем управления, теории электрических цепей, машиностроения, математического моделирования, математической логики, эволюционной биологии, неврологии, антропологии. Эти исследования появились в 1940 году, в основном, в трудах учёных на т. н. конференциях Мэйси (англ.).

Другие области исследований, повлиявшие на развитие кибернетики или оказавшиеся под её влиянием: теория управления, теория игр, теория систем (математический аналог кибернетики), психология (особенно нейропсихология, бихевиоризм, познавательная психология) и философия.

Что такое кибернетика?

Кибернетика — это междисциплинарная наука об общих закономерностях получения, хранения, преобразования и передачи информации в сложных управляющих системах, будь то машины, живые организмы или общество. Это попытка ученых создать общую математическую теорию управления сложными системами, совместить на первый взгляд несовместимое и найти общность там, где ее не может быть.

Сло­во «ки­бер­не­ти­ка» впер­вые упот­ребил Пла­то­н в диа­ло­ге «За­ко­ны» (4 в. до н. э.) для обо­зна­че­ния «принципов управ­ле­ния людь­ми». В научный оборот термин «кибернетика» ввел французский физик и математик Андре-Мари Ампер, чьим именем мы измеряем силу электрического тока. В 1834 году в своем фундаментальном труде «Опыт о философии наук, или аналитическое изложение естественной классификации всех человеческих знаний» он определил кибернетику как науку об управлении государством, которая должна обеспечить гражданам разнообразные блага.

В том виде, в каком мы понимаем его сегодня, термин «кибернетика» ввел американский математик Норберт Винер в своей книге «Кибернетика, или Управление и связь в животном и в машине», опубликованной издательством MIT Press/Wiley and Sons в 1948 году. Он создал совершенно новую область исследований и совершенно новый взгляд на мир.

Уникальность его идей в том, что он показал: животные, как и машины, могут быть включены в более обширный класс объектов, отличительной особенностью которого является наличие систем управления.

Винера называют «отцом кибернетики». Однако большой вклад в развитие науки внесли и другие ученые — английский психиатр Уильям Эшби, американский нейрофизиолог Уоррен Маккалок, английский математик Алан Тьюринг, мексиканский физиолог Артуро Розенблют, советские математики Андрей Колмогоров и Виктор Глушков и другие.

Академик Виктор Глушков — ключевая фигура советской кибернетики

(Фото: ТАСС)

Основные принципы кибернетики

Как и в любой науке, у кибернетики есть свои законы и принципы. Основные из них — это принцип «черного ящика» и закон обратной связи.

Принцип «черного ящика» ввел английский психиатр, специалист по кибернетике и пионер в исследовании сложных систем Уильям Эшби. Этот принцип позволяет изучать поведение системы, то, как она реагирует на внешние воздействия, и в то же время абстрагироваться от ее внутреннего устройства. То есть кибернетики соглашаются с когнитивными ограничениями человека и невозможностью понять всех состояний системы, которые она может принимать прямо сейчас.

Закон обратной связи заключается в простом факте: если есть объект управления и субъект управления, то для выработки адекватных управляющих воздействий, имея информацию о состоянии объекта, субъект может принимать адекватное решение по его управлению. То есть манипулируя входными сигналами, мы можем наблюдать некий результат работы системы на выходе. При этом принципы и законы кибернетики одинаково применимы к управлению автомобилем, крупным предприятием, поведением толпы или бионическим протезом.

Одно из важнейших достижений кибернетики — разработка и широкое использование метода математического моделирования. Он позволяет проводить эксперименты не с реальными физическими моделями изучаемых объектов, а с их математическим описанием в виде компьютерных программ.

Системный анализ и теория систем

Практическая потребность общества в научных основах принятия решений возникла с развитием науки и техники только в XVIII веке Началом науки «Теория принятия решений» следует считать работу Жозефа Луи Лагранжа, смысл которой заключался в следующем: сколько земли должен брать на лопату землекоп, чтобы его сменная производительность была наибольшей. Оказалось, что утверждение «бери больше, кидай дальше» неверен. Бурный рост технического прогресса, особенно во время и после второй мировой войны, ставил все новые и новые задачи, для решения которых привлекались и разрабатывались новые научные методы. Можно выделить следующие научно-технические предпосылки становления «Теории принятия решений»:

· удорожание «цены ошибки». Чем сложнее, дороже, масштабнее планируемое мероприятие, тем менее допустимы в нем «волевые» решения и тем важнее становятся научные методы, позволяющие заранее оценить последствия каждого решения, заранее исключить недопустимые варианты и рекомендовать наиболее удачные;

· ускорение научно-технической революции техники и технологии. Жизненный цикл технического изделия сократился настолько, что «опыт» не успевал накапливаться, и требовалось применение более развитого математического аппарата в проектировании;

· развитие ЭВМ. Размерность и сложность реальных инженерных задач не позволяло использовать аналитические методы.

Инженерное дело теснейшим образом связано с совокупностями объектов, которые принято называть сложными системами, которые характеризуются многочисленными и разнообразными по типу связями между отдельно существующими элементами системы и наличием у системы функции назначения, которой нет у составляющих ее частей. На первый взгляд каждая сложная система имеет уникальную организацию. Однако более детальное изучение способно выделить общее в системе команд ЭВМ, в процессах проектирования лесной машины, самолета и космического корабля.

В научно-технической литературе существует ряд термином, имеющих отношение к исследованию сложных систем. Наиболее общий термин «теория систем» относится к всевозможным аспектам исследования систем. Ее основными частями являются

· системный анализ, который понимается как исследование проблемы принятия решения в сложной системе,

· кибернетика, которая рассматривается как наука об управлении и преобразовании информации.

Здесь следует заметить, что понятие управления не совпадает с принятием решения. Условная граница между кибернетикой и системным анализом состоит в том, что первая изучает отдельные и строго формализованные процессы, а системный анализ — совокупность процессов и процедур.

Очень близкое к термину «системный анализ» понятие — «исследование операций«, которое традиционно обозначает математическую дисциплину, охватывающую исследование математических моделей для выбора величин, оптимизирующих заданную математическую конструкцию (критерий). Системный анализ может сводиться к решению ряда задач исследования операций, но обладает свойствами, не охватываемыми этой дисциплиной. Однако в зарубежной литературе термин «исследование операций» не является чисто математическим и приближается к термину «системный анализ». Широкая опора системного анализа на исследование операций приводит к таким его математизированным разделам, как

· постановка задач принятия решения;

· описание множества альтернатив;

· исследование многокритериальных задач;

· методы решения задач оптимизации;

· обработка экспертных оценок;

· работа с макромоделями системы.

Кибернетика и футурология

Норберт Винер. Кибернетика. 1968 год

Виктор Сокирко читал «Кибернетику» Норберта Винера и ссылался на пьесу Карела Чапека «R.U.R.»  «R.U.R.» («Rossumovi univerzální roboti», «Россумские универсальные роботы») — научно-фантастическая пьеса Карела Чапека, написанная в 1920 году. Ее действие происходит на фабрике по производству роботов-андроидов. как на возможный сценарий кибернетического будущего. Однако для него и для Доры Штурман главной целью было не пред­сказать путь развития человечества, а утвердить свои идеологические взгляды. Не кибернетика привела Сокирко и Штурман к либеральным убеждениям, она стала лишь инструментом защиты их идей о перспективах развития советского общества. На фоне других, более полемических и эмоциональных самиздат­ских работ о советском обществе, книги Штурман и Сокирко выглядели серьез­ными исследованиями, основанными на научных теориях и экономической статистике. И все же это публицистические, а не научные труды.

В отличие от Штурман и Сокирко Валентин Турчин пришел к своим взглядам через знакомство с кибернетикой. Он заинтересовался ею как общей теорети­ческой дисциплиной, потенциально пригодной для ответа на разные философ­ские вопросы. Сейчас идеи Валентина Турчина об универсальных космических законах эволюции, которым подчинена жизнь человечества, кажутся наив­ными. Однако в 1960-е и 1970-е годы в объяснительную силу науки и идею закономерного прогресса верили как на Западе, так и в СССР. Можно сказать, что «Инерция страха» Турчина была в духе времени. Он смело применял к общественной жизни выводы кибернетики и называл XX век веком инфор­мации. В этом его работа не отличалась от трудов известных западных ученых-футурологов, таких как Элвин Тоффлер и Дэниел Белл  Элвин Тоффлер и Дэниел Белл считали, что развитые страны входят в стадию постин­ду­стриального, или информационного, обще­ства, где информация и наука будут главными ценностями и движущими силами прогресса. По их прогнозам, человечество должно было вскоре объединиться в одну мировую систему без разделения на государства.. Валентин Турчин предвосхитил в своей брошюре их идеи, однако не стоит думать, что у него самого не было предшественников.

Станислав Лем. Сумма технологии. Обложка издания 1974 года

Так, в СССР были популярны произведения польского писателя-фантаста Станислава Лема. В своем футуристическом трактате «Сумма технологии», переведенном на русский в 1968 году, он также соединял эволюцию человечества с эволюцией живой природы. Лем утверждал, что разумная жизнь появилась в космосе закономерно, вслед за низшими формами жизни. Больше того — в «Сумме технологий» Лем настаивал на том, что все страны мира стоят на грани глобального единства, когда национальные и государственные границы отойдут на второй план. Нельзя не увидеть в этом сходство с главной идей Турчина — о постепенном усложнении кибернетических организмов согласно закону увеличивающейся интеграции. 

Были и другие — футуристическая работа писателя-фантаста Артура Кларка «Черты будущего» (изданная в 1962 году и переведенная на русский в 1966-м) или популярная книга советского астрофизика Иосифа Шкловского «Вселен­ная. Жизнь. Разум» 1962 года. В них тоже говорилось о единстве человека и космоса, главенстве информации для будущего объединенного человечества.

1 / 2

Обложка книги Артура Кларка «Черты будущего». 1966 год Издательство «Мир»

2 / 2

Обложка книги Иосифа Шкловского. «Вселенная. Жизнь. Разум». 1976 год Издательство «Наука»

Все эти работы относились к футурологии. Как особая научная дисциплина, которая пытается предсказать будущее человечества на основе выводов естественных и точных наук, футурология появилась как раз в 1960-е годы. Когда люди открыли дорогу в космос, они почувствовали себя неотъемлемой частью космической системы. Казалось, что физические и химические законы развития вселенной одинаково применимы как к микробам и растениям, так и к человеку. 

История советской кибернетики показала, что у науки нет границ. Ее влияние на общественную мысль в СССР было таким же, как в США, несмотря на цен­зуру и идеологические препоны. Кибернетика позволяла отстаивать противо­положные идеологические взгляды: однопартийную и многопартийную систе­мы, плановую и рыночную экономику, сплоченное и разъединенное общество. Но главное, базовое «демократическое» правило кибернетики оставалось неизменным: чтобы успешно развиваться, государство должно обеспечивать свободу населению и находиться под его контролем.

Советская кибернетика в историях и картинках

Объекты изучения

Эта наука изучает всевозможные управляемые системы, используя понятия кибернетической системы и кибернетического подхода.

Кибернетический подход

Кибернетический подход состоит в замене исходной системы управления изоморфной моделью и дальнейшем изучении этой модели. Чтобы реализовать подход, применяется один из двух методов моделирования: компьютерное или имитационное. Оба метода подразумевают использование принципа «черного ящика». Экспериментатор моделирует внешнюю деятельность рассматриваемой системы, а ее структура, воспроизводящая поведенческие характеристики, остается скрытой.

Кибернетический подход позволяет исследовать несколько видов информационных моделей, отличающихся по запросам:

  • ответная реакция системы на воздействие внешних факторов;
  • оптимизация характеристик системы относительно функции ценности;
  • адаптивное управление;
  • прогноз динамики системного преобразования.

Информационная система

Кибернетическая система

Кибернетическая система представляет собой множество взаимосвязанных элементов, способных к приему, обработке, запоминанию и обмену информацией. Основные свойства подобных систем: адаптация, самоорганизация и самообучение с использованием накопленного опыта.

Кибернетика в целом рассматривает любые управляемые системы в абстрактной форме, не учитывая их материальную природу, поэтому системой может являться как вычислительная машина, так и общество либо его отдельные группы.

Направления

Кибернетические методы применяются во многих отраслях:

  • Биология. В рамках биологической ветви этой науки исследуются кибернетические системы в организмах. Также ученые решают вопросы передачи генной информации между поколениями живых организмов. В широком смысле биологическая кибернетика занимается исследованием методов моделирования структур и поведения биологических систем.
  • Медицина. Кибернетика в медицине помогает диагностировать заболевания при помощи вычислительной техники и используется для создания высокотехнологичных протезов.
  • Экономика. Методы данной науки используют для анализа всей экономики и отдельных ее элементов как сложной системы при помощи экономико-математического моделирования.
  • Инженерия. Кибернетика в инженерии применяется для анализа масштабных сбоев систем, вызванных мелкими и незначительными ошибками.
  • Информатика. В информатике ее методы используют для анализа информации и управления вычислительной техникой.
  • Психология. В психологии существует отдельное направление психологической кибернетики, в рамках которого изучается взаимодействие систем анализа, сфер сознания и бессознательного в ходе взаимодействия людей с различными системами, а также между собой. Кроме того, эта дисциплина значительно повлияла на развитие психологии труда и ее подвидов.

Особняком стоит направление чистой кибернетики, в рамках которого происходит понятийное изучение систем управления. Ее главная задача – обнаружение основных принципов таких систем.

Информационная система

Внимание! Есть известная шутка про университет ядерной кибернетики, однако на данный момент не существует ни такого вуза, ни такого направления, как ядерная кибернетика.

Немного истории

Термин «кибернетика» в научный оборот ввел французский физик Ампер в 30-х годах XIX века. Согласно определению Ампера, она является наукой об эффективном управлении государством, главная цель которого — обеспечение потребностей его жителей.

Кибернетика как наука зародилась в 1940-е. Она объединила теоретические знания и исследования из нескольких областей:

  • машиностроения;
  • систем управления;
  • логического моделирования;
  • теории электрических цепей;
  • биологии;
  • неврологии.

Несмотря на то, что первым определение дал Ампер, он не тот, кто заложил основы кибернетики. Основателем научного течения считается Норберт Винер, ученый из США. История кибернетики в современном понимании началась в 1948 году, когда была издана работа Винера под одноименным названием, ставшая фундаментом для нового направления в науке.

Вычислительные машины середины XX века отличались низким быстродействием. Норберт Винер, в сферу интересов и исследований которого входили эти машины, сформировал в своем труде общий список требований к ним.

вычислительная техника

Он считал это необходимым шагом для увеличения быстродействия ЭВМ, так как двоичная система является более экономичной. Также Норберт Винер настаивал на том, что машины должны быть способны к самообучению и, как следствие, к самостоятельному исправлению допущенных ошибок.

Помимо работы Винера, базовыми для нового научного направления стали труды Уильяма Росса Эшби, Уоррена Мак-Каллока и Уильяма Уолтера. Эти ученые наравне с Винером были теми, кто заложил основы кибернетики.

Современные достижения и пути развития

Смена ориентиров

Конец XX века стал определяющим периодом для кибернетики как науки. В конце 60-х это направление лишилось поддержки со стороны научного сообщества и столкнулось с проблемой выбора дальнейшего пути развития. Возрождение произошло в 70-х годах, когда биологи занялись разработкой новой кибернетической концепции, применимой для природных организаций и систем, не изобретенных человеком. История кибернетики получила новое направление для развития.

В 1980-х появилась «новая кибернетика», которая изучала взаимодействие политических подгрупп и элементов, создающих структуру политического сообщества. Была выработана новая концепция информации — ее стали рассматривать как нечто, созданное человеком в процессе взаимодействия с окружающей средой. Одной из главных задач новой кибернетики стало разрешение противоречия между микро- и макроанализом. Акцент с управляемой сместился к управляющей системе, а также к межсистемным связям.

Кибертехнологии

кибернетических организмов

Важным этапом в этой сфере стало изобретение и повсеместное применение кохлеарных имплантатов — они позволяют улучшить восприятие звуков у слабослышащих людей. Существуют и глазные электронные имплантаты, но пока что они менее распространены из-за сложности производства и вживления пациентам.

Также кибертехнологии позволили создать бионические протезы — искусственные руки и ноги, принимающие и откликающиеся на сигналы нервной системы, успешно имплантируют пациентам с ампутированными конечностями.

Интересных результатов в нулевые годы добились американские ученые, которые создали управляемых жуков, подключив электроды к нервным узлам насекомых. Таким образом им удалось контролировать полет одного из жуков в течение получаса.

Следующая цель ученых — создание искусственного сердца, которое можно будет использовать в качестве имплантата. В 2011 году врачам удалось вживить подобное сердце пациенту, но после этого он прожил всего месяц. Исследования продолжаются, и ученые полагают, что в будущем достижения в области кибернетики позволят им создать полноценную замену любому человеческому органу.

Чему нас учит кибернетика

О науке Кибернетике

Библиография

  • 1914 — «Упрощение в логике отношений»
  • 1930 — «Обобщенный гармонический анализ»
  • 1933 — «Интеграл Фурье и некоторые его приложения»
  • 1942 — «Экстраполяция, интерполяция и сглаживание стационарных временных рядов»
  • 1948 — «Кибернетика, или Управление и связь в животном и машине»
  • 1950 — «Человеческое использование человеческих существ: Кибернетика и общество»
  • 1953 — «Бывший вундеркинд: мое детство и юность»
  • 1956 — «Я — математик»
  • 1958 — «Нелинейные задачи в теории случайных процессов»
  • 1959 — «Искуситель»
  • 1964 — «Акционерное общество «Бог и Голем»: Обсуждение некоторых проблем, в которых кибернетика сталкивается с религией»

Цитаты

  • «Дисциплина учёного заключается в том, что он посвящает себя поискам истины.»
  • «Наиболее совершенной моделью кота является такой же кот, а лучше — он сам.»
  • «Учёные обычно отличаются излишней чувствительностью, и так же легко возбуждаются, как художники и поэты.»
  • «То, что мы пока не можем телеграфировать схему человека из одного места в другое, связано, в основном, с техническими трудностями.»
  • «В вероятностном мире мы уже не имеем больше дела с величинами и суждениями, относящимися к определенной реальной вселенной в целом, а вместо этого ставим вопросы, ответы на которые можно найти в допущении огромного числа подобных миров.»

Будущее кибернетики

Ожидания от кибернетики как научной дисциплины, которая сотворит революцию в обществе, в середине XX века были очень велики, но не все они смогли оправдаться. По мнению ученых, это произошло не из-за ограничений самой науки, а ограниченности специалистов, не сумевших реализовать потенциал кибернетических идей из-за их технологической и экономической несвоевременности. Спустя 70 лет у кибернетики есть все шансы реабилитироваться. Сегодня мы живем во времена, когда вычислительные возможности кажутся безграничными. Уже сейчас правительства и компании соревнуются, чтобы использовать преимуществами инноваций.

По мнению профессора Колледжа естественных наук Техасского университета Энди Эллингтона, в будущем люди начнут представлять собой нечто вроде новой «жизненной» формы, более связанной чем когда-либо с вычислительными устройствами. Достижения в области нейробиологии, электрохимии и синтетической биологии позволят нам подключаться к Сети напрямую.

Доктор биологических наук, профессор физического факультета и ведущий сотрудник Центра нейротехнологий ЮФУ Борис Владимирский считает, что интеграция мозга и кибернетики приведет к созданию виртуальной доли человеческого мозга. Она будет служить не только для распознавания образов или решения логических задач. Но и сообщать информацию, предлагать варианты разумного взаимодействия, отвечать на вопросы, а порой и задавать их.

Детство и юность

Норберт родился 26 ноября 1894 года в Колумбии, штат Миссури. Мальчик стал первенцем для Лео Винера и Берты Кан, немки по национальности. К моменту рождения сына отец занимал должность профессора на кафедре славянских языков и литературы в Гарварде. Можно предположить, что задатки гениальности достались Винеру-младшему от родителя. В детстве Лео мог говорить на 12 языках.

Норберт Винер в детстве

Норберт выучил азбуку в неполные 2 года, а на 3-летие получил от родителей в подарок книгу по естественной истории, которую прочел за пару дней. Заметив в наследнике такие удивительные способности, отец начал регулярно заниматься с ребенком. К шести годам мальчик познакомился с творениями античных классиков, трудами Чарльза Дарвина и Олдоса Хаксли.

В 7 лет вундеркинд написал научный трактат по дарвинизму, а в 11 стал студентом Тафтс-колледжа. Лео постоянно давал интервью, рассказывая об одаренности сына, при этом проявлял чрезмерную строгость к нему. Давление отца в дальнейшем наложило отпечаток на психику ученого, сделало мужчину неуверенным в себе, породило неврозы и комплексы.

В 15 лет, получив степень бакалавра, юноша продолжил обучение в Корнеллском и Гарвардском университетах, где занимался математической логикой. По окончании получил докторскую степень. В 19 лет молодого человека пригласили преподавать в Массачусетском технологическом институте.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector